Contributor:Saritha Mary Zachariah
Picture being able to scatter hundreds of tiny sensors around a building to monitor temperature or humidity. Or deploying, like pixie dust, a network of minuscule, remote sensor chips to track enemy movements in a military operation.
"Smart dust" devices are tiny wireless microelectromechanical sensors (MEMS) that can detect everything from light to vibrations. Thanks to recent breakthroughs in silicon and fabrication techniques, these "motes" could eventually be the size of a grain of sand, though each would contain sensors, computing circuits, bidirectional wireless communications technology and a power supply. Motes would gather scads of data, run computations and communicate that information using two-way band radio between motes at distances approaching 1,000 feet.
Smartdust is a term used to describe groups of very small robots which may be used for monitoring and detection. Currently, the scale of smartdust is rather small, with single sensors the size of a deck of playing cards, but the hope is to eventually have robots as small as a speck of dust. Individual sensors of smartdust are often referred to as motes because of their small size. These devices are also known as MEMS.
The Smart Dust mote is run by a microcontroller that not only determines the tasks performed by the mote, but controls power to the various components of the system to conserve energy. Periodically the microcontroller gets a reading from one of the sensors, which measure one of a number of physical or chemical stimuli such as temperature, ambient light, vibration, acceleration, or air pressure, processes the data, and stores it in memory. It also occasionally turns on the optical receiver to see if anyone is trying to communicate with it. This communication may include new programs or messages from other motes. In response to a message or upon its own initiative the microcontroller will use the corner cube retroreflector or laser to transmit sensor data or a message to a base station or another mote.
The primary constraint in the design of the Smart Dust motes is volume, which in turn puts a severe constraint on energy since we do not have much room for batteries or large solar cells. Thus, the motes must operate efficiently and conserve energy whenever possible. Most of the time, the majority of the mote is powered off with only a clock and a few timers running. When a timer expires, it powers up a part of the mote to carry out a job, then powers off. A few of the timers control the sensors that measure one of a number of physical or chemical stimuli such as temperature, ambient light, vibration, acceleration, or air pressure. When one of these timers expires, it powers up the corresponding sensor, takes a sample, and converts it to a digital word. If the data is interesting, it may either be stored directly in the SRAM or the microcontroller is powered up to perform more complex operations with it. When this task is complete, everything is again powered down and the timer begins counting again.
The Defense Advanced Research Projects Agency (DARPA) has been funding smartdust research heavily since the late 1990s, seeing virtually limitless applications in the sphere of modern warfare. So far the research has been promising, with prototype smartdust sensors as small as 5mm. Costs have been dropping rapidly with technological innovations, bringing individual motes down to as little as $50 each, with hopes of dropping below $1 per mote in the near future.
- Defense-related sensor networks
- battlefield surveillance, treaty monitoring, transportation monitoring, scud hunting, ...
- Virtual keyboard
- Glue a dust mote on each of your fingernails. Accelerometers will sense the orientation and motion of each of your fingertips, and talk to the computer in your watch. QWERTY is the first step to proving the concept, but you can imagine much more useful and creative ways to interface to your computer if it knows where your fingers are: sculpt 3D shapes in virtual clay, play the piano, gesture in sign language and have to computer translate, ...
- Combined with a MEMS augmented-reality heads-up display, your entire computer I/O would be invisible to the people around you. Couple that with wireless access and you need never be bored in a meeting again! Surf the web while the boss rambles on and on.
- Inventory Control
- The carton talks to the box, the box talks to the palette, the palette talks to the truck, and the truck talks to the warehouse, and the truck and the warehouse talk to the internet. Know where your products are and what shape they're in any time, anywhere. Sort of like FedEx tracking on steroids for all products in your production stream from raw materials to delivered goods.
- Product quality monitoring
- temperature, humidity monitoring of meat, produce, dairy products
- impact, vibration, temp monitoring of consumer electronics
- failure analysis and diagnostic information, e.g. monitoring vibration of bearings for frequency signatures indicating imminent failure (back up that hard drive now!)
- The Center for the Built Environment has fabulous plans for the office of the future in which environmental conditions are tailored to the desires of every individual. Maybe soon we'll all be wearing temperature, humidity, and environmental comfort sensors sewn into our clothes, continuously talking to our workspaces which will deliver conditions tailored to our needs. No more fighting with your office mates over the thermostat.
2. www.robotics.eecs.berkeley.edu
2 comments:
what if these thing get into tour blood and lungs.......?
and since it's floating in air....won't u think dat this will become a menace?
i think....this also cause a negative impact on privacy of human life......
:-)
NOPES..IT DOES NOT..IT JUST BIO-COMPATIBLE..NOT A HAZARD TO BODY..
Post a Comment